321 |
Rectified 321 |
Birectified 321 |
Rectified 132 |
132 |
231 |
Rectified 231 |
|
Orthogonal projections in E6 Coxeter plane |
---|
In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.
Coxeter named it 132 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 1-node sequences.
The rectified 132 is constructed by points at the mid-edges of the 132.
These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
Contents |
132 | |
---|---|
Type | Uniform 7-polytope |
Family | 1k2 polytope |
Schläfli symbol | {3,33,2} |
Coxeter symbol | 132 |
Coxeter-Dynkin diagram | |
6-faces | 182: 56 122 126 131 |
5-faces | 4284: 756 121 1512 121 2016 {34} |
4-faces | 23688: 4032 {33} 7560 111 12096 {33} |
Cells | 50400: 20160 {32} 30240 {32} |
Faces | 40320 {3} |
Edges | 10080 |
Vertices | 576 |
Vertex figure | t2{35} |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
This polytope can tessellate 7-dimensional space, with symbol 133, and Coxeter-Dynkin diagram, .
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram,
Removing the node on the end of the 2-length branch leaves the 6-demicube, 131,
Removing the node on the end of the 3-length branch leaves the 122,
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 6-simplex, 032,
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |
Rectified 132 | |
---|---|
Type | Uniform 7-polytope |
Schläfli symbol | t1{3,33,2} |
Coxeter symbol | t1(132) |
Coxeter-Dynkin diagram | |
6-faces | 758 |
5-faces | 12348 |
4-faces | 72072 |
Cells | 191520 |
Faces | 241920 |
Edges | 120960 |
Vertices | 10080 |
Vertex figure | {3,3}×{3}×{} |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The rectified 132 is a rectification of the 132 polytope, creating new vertices on the center of edge of the 132. Its vertex figure is a duoprism prism, the product of a regular tetrahedra and triangle, doubled into a prism: {3,3}×{3}×{}.
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. These mirrors are represented by its Coxeter-Dynkin diagram, , and the ring represents the position of the active mirror(s).
Removing the node on the end of the 3-length branch leaves the rectified 122 polytope,
Removing the node on the end of the 2-length branch leaves the demihexeract, 131,
Removing the node on the end of the 1-length branch leaves the birectified 6-simplex,
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the tetrahedron-triangle duoprism prism, {3,3}×{3}×{},
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |